GRUNDLAGEN - PIXINSIGHT

Datenreduktion und Bearbeitung von DSLR-Aufnahmen

© Simon Großlercher (Betelgeuse93)

SYMBOLE

Auf den ersten Blick scheint die Oberfläche von PixInsight gewöhnungsbedürftig. Zu Beginn sorgen vor allem die folgenden Symbole für Verwirrung, deshalb eine kurze Erklärung:

Das Viereck wendet die Operation auf das **aktive Fenster** an.

Das Dreieck macht im Prinzip dasselbe, allerdings ermöglicht es per Drag&Drop die Anwendung auf jedes sichtbare Fenster. Gewöhnungsbedürftig, aber genial!

Der Kreis kommt eher selten vor. Nämlich immer dann, wenn eine Operation auf mehrere Bilder angewendet werden soll.

Das Symbol für den **RealTimePreview** also Echtzeitvorschau. Damit lassen sich Veränderungen (Histogrammstretch, Farbsättigung etc.) live beobachten.

Der Reset-Button zur Zurücksetzung des Prozesses auf die Grundeinstellung.

DUPLIZIEREN

In PixInsight arbeitet man eigentlich ständig mit Kopien des eigentlichen Bildes, meistens zur Erstellung von Masken (2.5). Dazu einfach in der linken oberen Ecke die Bezeichnungsmarke auf den Hintergrund von PI ziehen.

FORMAT EXPLORER

Bevor wir beginnen können, müssen wir im sog. "Format Explorer" einige Einstellungen vornehmen. Damit bestimmen wir, wie PixInsight die Kamera-RAWs beim Import behandelt. Für DSLR-RAWs empfehle ich folgende Einstellungen:

00	🔷 RAW Format Preferenc	es	
Color Adjustm	nent	White Balance	
Brightness:	1.000000	Use Auto White Balance	
Red scale:	1.000000		
Blue scale:	1.000000	Use Camera White Balance	
Create super-pixels from the RAW Bayer matrix (no interpolation) This option uses the Bayer matrix to create one <i>super-pixel</i> from each group of four pixels (RGBG). The size of the resulting image is thus reduced by two.			
Create RAW Bayer image (no interpolation, no debayerization, RGB image) This option creates a picture from the Bayer matrix as is. No interpolation is done and each pixel is either red, green or blue, as defined by the Bayer pattern.			
Create RAW Bayer CFA image (no interpolation, no debayerization, monochrome image) This option creates a picture from the Bayer matrix as is. No interpolation is done and the output is a monochrome image reproducing the CFA pattern as stored in the device.			
No black point correction When this option is enabled, no black point correction is applied to raw images to remove darkness level pedestals. This option must be enabled to load all raw images referred to a fixed zero black point value.			
Interpolation			
O Bilinear (ve	O Bilinear (very fast, moderate quality)		
Threshold-Based Variable Number of Gradients (VNG)			
O Patterned Pixel Grouping (PPG)			
O Adaptive H	omogeneity-Directed (AHD)		
Interpolate Use this of	RGB as four colors option if the output shows false 2x2 meshes v	with VNG, or mazes with AHD.	

OK

Cancel

1. DATENREDUKTION

- PixInsight eignet sich neben der Bearbeitung hervorragend zur Datenreduktion von Bias, Darks, Flats und Lights.
- Verwendete Prozesse: ImageIntegration; ImageCalibration; StarAlignment
- Aufgrund der prozessorlastigen Operationen kann dies einen längeren Zeitraum in Anspruch nehmen.
- Es gibt ein Script, welches die folgenden Operationen automatisiert. Der Übersicht halber beschreibe ich jedoch die einzelnen Prozesse.

1.1 INTEGRATION: BIAS

Zur Erstellung von **Bias** rate ich wärmstens. Durch diese kann das Ausleserauschen einer DSLR aus den Lights entfernt werden. Darks sollten bei einer konstanten Temperatur (+/-0,5°C) erstellt werden. Da man bei einer DSLR aber keine Möglichkeit der Temperaturregelung hat, kann man sich die Darks sparen und stattdessen Dithern.

Die Einstellungen kann man wie auf dem Foto übernehmen, lediglich der "Rejection algorithm" sollte je nach Bildanzahl angepasst werden. Percentile Clipping <10 Winsorized Sigma 10-20 Linear Fit Clipping >20

×ж

Input Images

Format Hints

Image Integration

Combinat

Normalizat

Weig

Weight keywo

Buffer size (M Stack size (M

Pixel Rejection (1

Rejection algorith Normalizati

Pixel Rejection (2

Min/Max I Min/Max hi Percentile I

Percentile hi

Sigma I

Sigma h

Linear fit l

Linear fit hi

Range le

Range hi

Pixel Rejection (3

•

_	ImageIntegration	Σ	
		Ŧ	
		Ŧ	
tion		\$	
ation:	Average +		
ation:	No normalization ‡		
ahts:	Don't care (all weights = 1) ÷		
word:			
	Generate integrated image		
	Generate a 64-bit result image		
	Evaluate noise		A COLORADOR
	Close previous images		Britt
(MB):	16 \$		
(MB):	1024		
	Use file cache		
(1)		*	
ithm:	Winsorized Sigma Clipping +		
ation:	No normalization +		
	Generate rejection maps		
	Clip low pixels		
	Clip high pixels		
	Clip high range		All and a second
(2)		\$	
low:	1		
high:	1		
low:	0.200		
high:	0.100		
low:	4.000		
high:	4.000	_	
t low:	5.000		
high:	2.500		
leve	0.000000		
: 10W:	0.000000	_	
high:	0.980000	0	
(3)		Ψ.	
nterest	:	τ.	
	D &	¥	

1.2 CALIBRATION: FLATS

Wie schon in der vorigen Folie erwähnt erstellt man Bias um das Ausleserauschen der Kamera in den Aufnahmen los zu werden.
Da unsere Lights mit den Bias und Flats korrigiert werden, sollte natürlich auch das Ausleserauschen auf den Flats entfernt werden.

Flats unter "Add Files" hinzufügen und unter "Output directory" einen Ausgabepfad festlegen. Dort werden die kalibrierten Flats abgespeichert.

Anschließend noch unser zuvor erstelltes Masterbias auswählen und den Haken "Calibrate" setzen.

< x	ImageCalibration	_	
Target Frames			*
		Add Files	
		Select All	
		Invert Selectio	n
		Toggle Selecter	d
		Remove Selecte	ed
		Clear	
		Full paths	
Format Hints			- ¥
Output Files			*
Output directory:] • [
Output extension:	.fit Prefix: Postfix: _c		
Sample format:	32-bit floating point \$		
Output pedestal (DN):	0		
	Overwrite existing files On error:	Continue ‡	
Pedestal			-
Overscan			- 😜
🗹 Master Bias			*
/Users/Simon/Desktop/Mes	sier 33_550D/Masterbias.fit		•
	Calibrate		
O Master Dark			•
Master Flat			•
			N 18

1.3 INTEGRATION: FLATS

In diesem Schritt stacken wir unsere Flats. Diese sind eine Grundvoraussetzung für ein gutes Astrofoto.

Mit Flats korrigiert man die Bildfeldausleuchtung, eliminiert also Vignettierung, Gradienten und sichtbare Staubpartikel auf der Aufnahme.

Bei der Flat-Integration wenden wir ein multiplikatives Normalisierungsverfahren an. Für den "rejection-algorithm" gilt das selbe wie für Bias. Bei der Normalisierung sollte aber auf "equalize fluxes" umgestellt werden.

х т

Input Images

Format Hints

Image Integration

Combinat

Normalizat

Weig

Weight keyw

Buffer size (M Stack size (M

Pixel Rejection (

Rejection algorith Normalizat

Pixel Rejection (

Min/Max I Min/Max h Percentile

Percentile hi

Sigma

Sigma h

Linear fit I

Linear fit hi

Range l

Range hi

Pixel Rejection (3

. •

ImageIntegration	Σ
	*
	*
ion	\$
tion: Average +	
tion: Multiplicative +	
ghts: Don't care (all weights = 1) +	
vord:	
Generate integrated image	
Generate a 64-bit result image	
Evaluate noise	
Close previous images	
MB): 16	
MB): 1024	
Use file cache	_
(1)	2
thm: Winsorized Sigma Clipping +	
tion: Equalize fluxes ÷	
Generate rejection maps	
Clip low pixels	
Clip high pixels	
(2)	1
low: 1	
high: 1 (1)	
low: 0.200	
nign: 0.100	
low: 4.000	
high: 4.000	
low: 5.000	
nign: 2.500	
low: 0.000000	
high: 0.980000	
(3)	*
terest	*

1.4 CALIBRATION: LIGHTS

Nun kalibrieren wir unsere Lights mit dem zuvor erstellten Masterbias bzw. Masterflat.

Erneut unter "add Files" die entsprechenden Bilder auswählen, Ausgabepfad festlegen und die beiden Master-Dateien auswählen.

WICHTIG: "Calibrate"-Haken bei Master Flat darf nicht aktiv sein.

Wir haben schon in 1.2 unsere Flats kalibriert.

🗶 ImageCalibration	
Target Frames	\$
	Add Files
	Select All
	Invert Selection
	Toggle Selected
	Remove Selected
	Clear
	Full paths
Format Hints	•
Jutput Files	x
Output directory:	
Output extension: .fit Prefix: Postfix:	_c
Sample format: 32-bit floating point +	
Output pedestal (DN): 0	
Overwrite existing files On erro	or: Continue +
Pedestal	*
Overscan	Ŧ
🗹 Master Bias	\$
/Users/Simon/Desktop/Messier 33_550D/Masterbias.fit	•
Calibrate	
Master Dark	\$
🗹 Master Flat	\$
/Users/Simon/Desktop/Messier 33_550D/Masterflat.fit	•
Calibrate	
	ь ж

1.5 DEBAYERN: LIGHTS

Unsere DSLR-Raws liegen noch in einer monochromen Form vor, sprich mit Bayermatrix.

Damit das Staralignment im folgenden Schritt funktioniert, müssen wir diese zunächst deBayern.

Wir öffnen "Script"--> "BatchProcessing"-->"BatchDeBayer"

Mit "Add" fügen wir unsere kalibrierten Lights hinzu, wählen "VNG" und "RGGB" und definieren einen Ausgabepfad.

Anschließend mit "execute" ausführen.

00

Batch Debayer Script v1.2.5

A batch image debayer conversion utility for OSC CCD and DSLR imagers. This script collects a batch of files and applies the Debayer process to each with the specified Bayer pattern and debayering method. Then it writes the resulting RGB color images to the specified output directory. The output format can be selected by modifying the output file extension (.fit by default).

Based upon an original script created by Niall J. Saunders, with contributions from Ken Pendlebury, Juan Conejero and Zbynek Vrastil. Last updated on 2011/10/18.

Input Images			
Add	Clear	Invert Selection	Remove Selected
ebayer Options			
Debayer Method:		Bayer / Mosaic Pattern:	
VNG	÷]	RGGB	;
Output Directory			
			Felect
			Select
tout extension : fit	Overwrite existing f	llee	
tput extension : .nt	Overwrite existing h	lies	
			Execute Exit

1.6 ALIGNMENT: LIGHTS

Im Schritt 1.5 erfolgt das Ausrichten der einzelnen Lights anhand der Sternenpositionen auf den letzteren. Dies ist eine äußerst prozessorlastige Operation und beansprucht die längste Zeit.

Zu aller erst wählt man ein Referenzbild. Am fertigen Stack wird das fotografierte Objekt die selbe Position wie auf diesem Bild haben.

Hier müssen wir an den Grundeinstellungen nichts verändern. "Hot pixel removal" sollte auf 1 gestellt sein.

×т Reference image: Messier Working mode: Register Genera Frame Target Images IMG_7093_c.fit IMG 7095 c.fit 7096 c.fit IMG 7097 c.fit IMG 7099 c.fit IMG 7100_c.fit IMG 7101 c.fit IMG_7170_c.fit 🖺 IMG_7171_c.fit IMG_7172_c.fit Format Hints Output Images Output directory: Output extension: .fit Sample format: Same a Overw Star Detection Detection scales: 4 Noise scales: Hot pixel removal: 1 Log(sensitivity): -1.00 Peak response: 0.80 Maximum distortion: 0.500 Inverte Star Matching Interpolation . 🔳 🔘

StarAlignment	
3_550D/Lights/cal/IMG_7170	_c.fit File + 🗸
/Match Images ‡	
ite masks	
adaptation	
	\$
	Add Files
	Add Views
	Select All
	Invert Selection
	Toggle Selected
	Remove Selected
	Clear
	Full paths
	\$
	\$
	•
Prefix: Postfix: r	Mask: _m
s target 🕴	
rite existing files On error	: Continue +
	1
٢	
\$	
0	
d image	
a image	
	*
	*
	N ¥

1.7 INTEGRATION: LIGHTS

Im letzten Schritt stacken wir unsere kalibrierten und ausgerichteten Lights.

Es hat sich wieder einiges an den Einstellungen verändert. Ich empfehle diese 1:1 zu übernehmen, lediglich für den "rejection algorithm" gilt wieder selbes wie für Flats und Bias.

× ×

Input Images

Format Hints

Image Integration

Combination:

Normalization

Weights:

Weight keyword:

Buffer size (MB) Stack size (MB)

Pixel Rejection (1)

Rejection algorithm: Normalization:

Pixel Rejection (2)

Min/Max low: Min/Max high: Percentile low: Percentile high: Sigma low: Sigma high: Linear fit low: Linear fit low: Range low: Range high:

Pixel Rejection (3)

	- X	
	Ŧ	
	2	
a: Average t		
Additive T		
s: Noise evaluation +		
i:		
Generate integrated image		
Generate a 64-bit result image		
Close previous impose		
): 16		
1: 1024		
V Use file cache		
	+	
	-	
1: Linear Fit Clipping +		
n: Scale + zero offset +		
Generate rejection maps		
Clip low pixels		
Clip high pixels		
Clip low range		
	*	
1. 1		
v: 0.200		
0.100		
4.000		
1: 2.000		
. 5.000		
2.500		
v: 0.000000		
0.980000	-0-	
	¥	
est	¥	
	×	

2. BEARBEITUNG

- **PixInsight** bietet eine Unmenge an hocheffizienten Werkzeugen, um auch die letzte Information aus den Daten zu holen.
- In diesen hat man die Möglichkeit, viele Parameter individuell anzupassen. Da gibt es **keine Patentlösung**! -->Erfahrung
- Der im Folgenden gezeigte Bearbeitungsweg bietet eine gute Basis um in Zukunft eigenständig mit PixInsight arbeiten zu können. Ich gehe allerdings nicht zu sehr ins Detail.

2.1: SCREEN TRANSFER FUNCTION

Mit Hilfe der "Screen Transfer Function" (kurz: STF) können wir unser zu Beginn noch lineares Bild im gestreckten Zustand sehen, ohne dabei das Histogramm zu verändern. Dies bringt einige sehr wichtige Vorteile mit sich, wie wir in den folgenden Beispielen sehen werden.

Mit dem Button "A" wendet man die STF an, mit dem in der rechten unteren Ecke setzt man das Bild wieder zurück.

2.2 ZUSCHNEIDEN DES BILDES

Wir haben nun also den finalen Stack vor uns. Bevor wir damit arbeiten können müssen wir ihn richtig zuschneiden. Durch Dithern oder andere Bildausschnittveränderungen im Laufe der Aufnahmezeit (z.B Meridianumschwenk) entstehen bei der Integration dunkle Ränder.

Diese **müssen** jedenfalls entfernt werden!

Verwendetes Werkzeug: **DynamicCrop**

2.3.FARBKALIBRIERUNG

- Zuerst spalten wir das RGB-Bild in 3 Farbkanäle auf.
- Anschließend erfolgt die Abstimmung von R und B auf G.
- Erneutes Zusammenfügen der Farbkanäle zu einem RGB-Bild
- Muss direkt nach dem Crop erfolgen!

2.3.1 CHANNEL EXTRACTION

Damit wir die einzelnen Farbkanäle im nächsten Schritt aufeinander abstimmen können, müssen wir das RBG-Bild aufspalten. Wir verwenden dazu den Prozess "ChannelExtraction".

X X	ChannelExtraction	
 Color Space RGB O CIE XYZ HSV O CIE L*a*b* HSI O CIE L*c*h* 	Channels / Target Images ✓ R <auto> ✓ G <auto> ✓ B <auto> Sample Format: Same as source</auto></auto></auto>	
		B)#

2.3.2 LINEAR FIT

Nun öffnen wir den Prozess LinearFit und wählen den Grünkanal als Referenzbild. Der Grünkanal hat bei DSLR-Aufnahmen stets das beste SNR-Verhältnis und wird deshalb bevorzugt. Bei astromodifizierten DSLRs kann dazu auch der Rotkanal verwendet werden. "Reject High" **muss** auf 1 gestellt werden!

Anschließend wendet man die Operation sowohl auf den Blau- als auch den Rotkanal an.

X X	LinearFit
Reference image:	M31_crop_DBE_G
Reject low:	0.000000
Reject high:	1.000000

2.3.3 CHANNEL COMBINATION

Mit "ChannelCombination" vereinen wir schlussendlich die kalibrierten Kanäle zu einem neuen RGB-Bild.

Unter "Source Images" wählt man Rot-, Blau- und Grünkanal aus, und führt die Operation global aus.

X I		ChannelCombination
Color Space	Channels / Source Images	
	🗹 R	M31_crop_DBE_R
	🗹 G	M31_crop_DBE_G
	🗹 В	M31_crop_DBE_B
○ HSI ○ CIE L*c*h*	Target:	<no selected="" view=""></no>
 RGB CIE XYZ HSV CIE L*a*b* HSI CIE L*c*h* 	 ✓ R ✓ G ✓ B Target: 	M31_crop_DBE_G M31_crop_DBE_B <no selected="" view=""></no>

2.4 DYNAMIC BACKGROUND EXTRACTION

Die "Dynamic Background Extraction" (kurz: DBE) erstellt anhand von Pixelproben ein digitales Modell des Hintergrunds. Der Prozess korrigiert die letzten Unebenheiten des Hintergrunds.

Wichtig dabei ist, dass die Proben tatsächlich vom Hintergrund dominiert werden. Es sollen sich in diesen keine Sterne oder Nebel befinden.

Hier muss man mit den Begrenzungsparametern herumzuspielen.

Unter "Target Image Correction" auf "Subtract" stellen und Haken bei "Normalize" setzen.

XX Sample #: 128 Anchor X: 1252 Anchor Y: 3024 Radius: 40 R/K: 0.023065 Wr: 0.918 Wg: 0.945 Wb: 0.942 Model Parameters (1)

Model Parameters (2)

Sample Generation

Model Image

Target Image Correction

🔪 🗸 🗙

2.5 DAS ERSTELLEN VON MASKEN

Eine der zentralsten Techniken in PixInsight ist das Erstellen von Masken. Mit PixInsight lassen sich nicht nur Luminanz-, sondern auch Stern- und Objekt-masken kreieren; unkompliziert.

Wenn wir zum Beispiel eine Luminanzmaske verwenden, können wir unsere Galaxie oder Nebelstruktur bearbeiten, ohne dabei den Hintergrund zu beeinflussen. Invertiert man die selbe, kann man den Hintergrund getrost entrauschen (2.6), ohne dabei feine Strukturen zu verlieren.

Mit einer Sternmaske können wir, wie der Name schon sagt, die Sterne auf unserem Bild maskieren. Das ist dann hilfreich, wenn wir etwa unsere Sterne verkleinern wollen, oder jene kleinen, welcher bei Rauschreduktion etwas in Mitleidenschaft gezogen wurden, nachschärfen.

Es benötigt etwas Erfahrung und Gespür um eine Maske zu bauen, welche lediglich das Objekt schützt. Dabei arbeite ich mit einer Kombination aus Luminanz- und Sternmaske.

2.5.1 LUMINANZMASKE

Angenommen wir wollen nun eine Maske erstellen, um das Rauschen des Hintergrunds zu reduzieren:

Zuerst setzen wir die STF zurück.

Anschließend duplizieren wir unser Bild (Siehe Anfang).

Auf unserer Maske soll der Unterschied zwischen Objekt und Hintergrund möglichst groß sein. Wir müssen also das **Histogramm der Kopie** verändern. Dazu öffnen wir "HistogramTransformation".

Das Histogramm anschließend anpassen. Ich empfehle die Zuhilfenahme der Echtzeitvorschau!

HistogramTransformation	L
	The second se
	192
	and the second sec
	¥ 1 ‡ 1 ‡
	2
	•
	• • •
76. %0.0005	HL LL W
10, 100,000	
0, %0.0000	
	Auto Clip Setup
	B V X

Wir sehen dass die auf der Maske weißen Bereiche jetzt am Bild schwarz sind, also unmaskiert, während der Hintergrund rot, also maskiert ist. Wir wollen genau das Gegenteil, also invertieren wir die Maske:

2.5.2 STARMASK

Wir haben gerade unsere erste Luminanzmaske erstellt und angewendet.

Nun wollen wir explizit die Sterne maskieren; Objekt und Hintergrund bleibt dabei unmaskiert!

Dazu öffnet man "StarMask".

Man sieht schon: Hier kann man sich an den Parametern austoben.

Je nachdem, welchen Zweck die Sternmaske erfüllen soll, muss man jene entsprechend anpassen.

Ich werde an dieser Stelle nicht weiter ins Detail gehen, da dies die Grundlagen überschreitet.

X X

Scale: 5

Structure Growth

Large-scale: 2

Small-scale: 1

Compensation: 2

Mask Generation

Smoothness: 16

Mask Preprocessing

Midtones: 0.50000 Highlights: 1.00000 Truncation: 1.00000

H StarMask Noise threshold: 0.10000 Ŧ Working mode: Star Mask + * ÷ ÷ + * + Aggregate Binarize Contours Invert * Shadows: 0.00000 Limit: 1.00000 ЪЖ

2.6.RAUSCHREDUKTION

- Man unterscheidet 2 verschiedene Arten von Rauschen: Luminanz- und Chrominanzrauschen (Farbrauschen)
- PixInsight kennt eine Vielzahl von Werkzeugen zur Reduktion von Rauschen: "AtrousWaveletTransform", "MultiscaleWaveletTransform", "ACDNR", "SCNR" sind die geläufigsten.
- Die Reduktion des Luminanzrauschens sollte stets im linearen Zustand durchgeführt werden!

2.6.1 ANALYSIS

Bevor wir das Rauschen reduzieren können, müssen wir wissen "wo" es sich denn überhaupt befindet.

Dazu spalten wir unser Bild in 5 Detaillayer auf: Wir öffnen unter "Script">>"Image Analysis">>

"ExtractWaveletLayers"

Dieses Script wenden wir nun in den Grundeinstellungen auf unser Bild an.

Die Analyse ist nicht zwangsläufig notwendig, aber sie hilft uns u.a. die Rauschreduktion zu verstehen. ScriptWorkspaceWindoBatchProcessingCoordinateTransformationDevelopmentImageAnalysisInstrumentationRenderUtilitiesNunScript from Editor

Execute Script File...
Check Script File Synta

Feature Scripts...
Edit Scripts...

ExtractWaveletLayers v

number of wavelet layers. image window generated of target image in any way.

ow Resou	urces	15.040	Sec.	CONTRACTOR OF
ons	<a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><a><!--</td--><td><u></u>} [∄</td><td>6 0</td><td></td>	<u></u> } [∄	6 0	
AR	 Aberr Extrac Image Noise PSFEs 	ationSpot ctWaveletI Solver Evaluatior timator	ter Layers 1	
ax				
ractWaveletL	ayers Script			
/1.0 — A scrip Each waveled dynamically. 1	ot that splits an t layer is provid This script <i>does</i>	image into ed as a new not modify	a , the	
age06			-	
✓ Extract	residual layer			
Spline			-	
	ок	Cance		

Wie wir sehen befindet sich das meiste Rauschen in den ersten beiden Detaillayern.

2.6.2 ATROUS WAVELET TRANSFORM

Mit Hilfe der "AtrousWaveletTransform" werden wir nun gezielt in den ersten beiden Layern eingreifen:

Bevor wir "AtrousWaveletTransform" öffnen, wenden wir eine Luminanzmaske auf unser Bild an, sodass Objekt und Sterne geschützt und der Hintergrund ungeschützt ist (2.5.1).

Dann öffnen wir den Prozess, aktivieren die "NoiseReduction" für Layer 1 und 2 und setzen die am Bild zu sehenden Einstellungen.

Zum Schluss wenden wir die Operation an.

X			
Wa	velet	Laye	ers
•	Dyad	ic	
Scal	lina F	uncti	ion:
Lay	/er	Scal	e
Ľ,	1		1
Ľ	2		2
Ľ	3		4
Ľ	4 D	1	6
Ť	ĸ	1	.0
	_		
~	Deta	ail Lay	yer
	E	Bias:	0.
~	Nois	e Red	duc
т	hrest	nold:	3.
	Amo	unt:	1.
It	erati	ons:	2
	k-Si	gma	Noi
	Deri	nging)
Lar	ge-S	cale 1	Trar
Dyi	nami	c Ran	ge
Taro	let:		
RG	B/K	comp	one
		¢	

ATrousWaveletTransform	
	*
🔿 Linear: 🚺 🌲 Layers: 🖌	4 💌
: Linear Interpolation (3)	-
Parameters	_
S(3.000,1.00,2)	
S(1.000,1.00,1)	
	_
1/4	\$
000	
.000	
tion	*
.000	
00	
÷	
ise Thresholding	.
	¥
nsfer Function	¥
Extension	Ŧ
ents	-
the layer preview	•
	Ľ ¥

vorher

Anmerkung: Wir befinden uns immer noch im linearen Zustand!

nachher

2.7 STRECKEN DES HISTOGRAMMS

- 1. Schritt: Verwenden des Scripts "MaskedStretch" damit vermeiden wir zu große Sterne, welche wir später wieder verkleinern müssten.
- 2. Schritt: Manuelle Histogrammveränderung persönliches Finetuning

2.7.1**MASKED STRETCH**

Verwendet man das Script "MaskedStretch", erfolgt das Strecken des Histogramms in kleinen Schritten, sog. Iterationen (lat. Iter=Weg). Außerdem werden dabei sämtliche Sterne maskiert!

Bei Aufnahmen mit ausgebrannten Sternzentren kann ich dieses Script nicht empfehlen!

Man findet das Script unter "Script">>"Utilities">>

"MaskedStretch"

Ich verwende meistens die folgenden Einstellungen:

000

MaskedStretch v0.9 - A script to pe masked histogram transformations. This is good for preventing small stars from grow

Copyright © 2007 David Serrano, © 2010 Andres del Pozo

Choose the number of iterations and the median of the desired image (typically in the range 0.05 - 0.10). Then click 'Ok' and wait for a new image to be created. A smaller copy of the image will show the progress of the script.

You can specify an optional number of à trous wavelet layers to be removed from the mask in order to blur it. Alternatively, it can be blurred using a convolution too.

50.

Iterations:	80		
Target median:	0.150		
— Mask ————			
Shadows clipping:	0.000		
Blur method:	● None ○ À trous wavelets ○ Convo	lution	
Wavelet layers to remove:	2		
Wavelet scaling function:	3x3 Linear Interpolation		-
Convolution kernel size:	7		
Delete settings and exit			
		ОК	Cancel

MaskedStretch v0.9	

This program can't do aggressive changes with few iterations. An error message will appear if you try to do

2.7.1 MANUELL

Jetzt noch das manuelle Finetuning am Histogramm. Auf gar keinen Fall den linken Regler zu weit nach rechts ziehen. Dabei gehen Daten verloren.

Praktischerweise zeigt PI an, wie viele Pixel bereits verloren sind: In diesem Fall wären es 971, noch im grünen Bereich aber nicht optimal.

Hier zeigt die Echtzeitvorschau ihre wahre Stärke.

2.6.3 ACDNR **ADAPTIVE CONTRAST-DRIVEN NOISE REDUCTION**

Da wir nun den linearen Bereich verlassen haben, reduzieren wir das Farbrauschen. Dazu verwenden wir "ACDNR", mit dem wir zusätzlich noch das Luminanzrauschen dezent reduzieren können.

Zuerst definiert man eine Lightness Mask. Haken bei "Preview" setzen und mithilfe der Echtzeitvorschau die Maske anpassen.

Anschließend die Echtzeitvorschau schließen, "Preview"-Haken entfernen und oben den Haken "Lightness mask" setzen (Bei "Lightness" und "Chrominance").

Unter "Lightness" "Amount" auf 0.10 stellen. Unter "Chrominance" den Parameter StdDev auf 3.0 stellen.

Anschließend anwenden!

XX ACDNR Filters Chrominance Lightness Apply StdDev: 1.5 Amount: 0.90 Iterations: 3 Prefilter: None Robustness: 3x3 Weighted Average Structure size: 5 Dark Sides Edge Protection Threshold: 0.015 Overdrive: 0.00 Bright Sides Edge Protection Threshold: 0.015 Overdrive: 0.00 Star threshold: 0.030 Lightness Mask Preview Midtones: 0.50000 Shadows: 0.00000 Highlights: 1.00000

So sieht meine Lightness-Mask aus:

So sieht meine Lightness-Mask aus:

vorher

nachher

2.6.4 SCNR Subtractive-chromatic Noise reduction

Bestimmt habt ihr euch schon darüber gewundert warum euer Bild trotz Farbkalibrierung einen markanten Grünstich hat.

Ich bin mir selbst nicht ganz im Klaren darüber warum das so ist, aber ich vermute es liegt daran, dass Grün auf der Bayermatrix der DSLR doppelt vorhanden ist.

Naja egal, mit "SCNR" machen wir dem den Gar aus.

Einfach "SCNR" öffnen, und in der gezeigten Konfiguration anwenden.

X 🔺

Color to remove: Protection method: Amount:

SCNR	
Green	
Green	
Average Neutral	
1.00	
 Preserve lightness 	A DESCRIPTION OF A DESC

2.8 FARBSÄTTIGUNG

Schlussendlich wollen wir die Farbe sättigen. Wir wenden erneut eine Luminanzmaske an, denn sonst sättigen wir auch das verbliebene Farbrauschen des Hintergrunds.

Wir öffnen den Prozess "ColorSaturation" und ziehen die gelbe Linie am linken Ankerpunkt nach oben.

Anschließend wenden wir die Operation an.

💌 🤻 🗶 🕻	8 # 4	1	1	
Hue:	0.00000		<	
Saturation:	0.45167	•	1/2	
Hue shift:	0.000	-		
k 🔳 🔶				

ColorSaturation	_	 _	M
Ran	ge: 1 🌲		#
		🔰 🌾 🛙	E X
		C	X

Fertiges Bild (Ich habe das Histogramm nach der Farbsättigung ein zweites Mal angepasst):

VIEL ERFOLG!

Eine PixInsight-Einführung von Simon Großlercher